Chemistry of [Cp*RuOMe] ${ }_{2}$

XI *. Reactions with $\mathrm{P}(\mathrm{OMe})_{3}$

U. Koelle, Th. Ruether and W. Kläui
Institute for Inorganic Chemistry, Technical University of Aachen, W-5100 Aachen (Germany)

(Received August 27, 1991)

Abstract

Addition of $\mathrm{P}(\mathrm{OMe})_{3}$ to $\left[\mathrm{Cp}^{*} \mathrm{RuOMe}\right]_{2}(1)$ gave the new $\mathrm{Cp} * \mathrm{Ru}$ complexes $\left(\mathrm{Cp}^{*} \mathrm{RuOMe}\right)_{2}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)$ (2), $\mathrm{Cp}{ }^{*} \mathrm{Ru}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{2} \mathrm{OMe}$ (3) and $\mathrm{Cp}{ }^{*} \mathrm{Ru}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{2}\left(\mathrm{PO}(\mathrm{OMe})_{2}\right)(5) .3$ was converted slowly into the hydride $\mathrm{Cp}^{*} \mathrm{Ru}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{2} \mathrm{H}$ (4). Reaction of either 3,4 or the cationic trisphosphite complex $\left[\mathrm{Cp}{ }^{*} \mathrm{Ru}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{3}\right] \mathrm{CF}_{3} \mathrm{SO}_{3}(7)$, with NaI gave the iodo complex $\mathrm{Cp}{ }^{*} \mathrm{Ru}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{2} \mathrm{I}$ (6).

Introduction

The ready addition of ligands to the coordinatively unsaturated dimer $\left[\mathrm{Cp}^{*} \mathrm{RuOMe}\right]_{2}, 1$, has been amply demonstrated $[1-4]$. Whereas diphosphines react without cleavage of the dimer to yield the dimeric adducts ($\left.\mathrm{Cp}^{*} \mathrm{RuOMe}\right)_{2} \mathrm{dppm}$ [3], simple phosphines, CO , or nitrogen bases such as bipyridine cleave the dimer to give the monomeric complex type $\mathrm{Cp}^{*} \mathrm{RuL}_{2}(\mathrm{OMe})$ or derivatives thereof $[3,4]$. In contrast, the addition of $\mathrm{P}(\mathrm{OMe})_{3}$ was found to proceed stepwise, and the addition products undergo further transformations under mild conditions as described below.

Results

A pentanc or ether solution of $\mathbf{1}$ in the presence of up to 6 molar proportions of $\mathrm{P}(\mathrm{OMe})_{3}$ yields a binuclear monoadduct of composition $\left(\mathrm{Cp}^{\star} \mathrm{RuOMe}\right)_{2}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)$, 2. Monitoring of the reaction by ${ }^{1} \mathrm{H}$ NMR spectroscopy reveals the presence of a mixture of 1 and 2 after addition of the first portions of $\mathrm{P}(\mathrm{OMe})_{3}$ and finally a mixture of 2 and $\mathbf{3}$ (see below) along with free $\mathrm{P}(\mathrm{OMe})_{3}$. Complex 2 is characterized by an OMe signal shifted upfield by 0.2 ppm with respect to $\mathbf{1}$, a $\mathrm{P}(\mathrm{OMe})_{3}$

[^0]

Scheme 1.
doublet, and two Cp^{*} signals, a singlet ($\delta 1.65 \mathrm{ppm}$) and a doublet ($\delta 1.6 \mathrm{ppm}$. $\left.J\left(\mathrm{CH}_{3} \mathrm{P}\right) 2.1 \mathrm{~Hz}\right)$ in the correct integration ratio, clearly indicating that it is the monoadduct. The appearance of separate sharp signals for the two different (p* ligands in the presence of an excess of $\mathrm{P}(\mathrm{OMe})_{3}$, separated by only 0.04 ppm , indicate that the product is kinetically inert at ambient temperature on the NMR timescale ($k_{1}<1 \mathrm{~s}^{-1}$), where neither intermolecular exchange nor an intramolecular shift of the $\mathrm{P}(\mathrm{OMe})_{3}$ group to the neighbouring, coordinatively-unsaturated Ru atom occurs. Complex 2 is of limited thermal stability. It can be crystallized from pentane (see Experimental section) but tends to decompose on standing. All crystals examined on the X-ray diffractometer turned out to be twinned. It is noteworthy that PMe_{3} under similar conditions gave only $\mathrm{Cp}^{* R u(P M e, ~ O M e . ~}$ with no indications of a monoadduct.

No bisphosphite adduct to \mathbf{I} could be detected in the NMR spectrum. In all cases where addition to 1 occurs without cleavage of the methoxo tridge. cis$\left[\mathrm{Cp}^{*} \mathrm{RuL}(\mathrm{OMe})\right]_{2}$ complexes had been obtained $[1,4]$. The formation of a bis-cis adduct of $\mathrm{P}(\mathrm{OMe})_{3}$ may be unfavourable on steric grounds. On the other hand, $\mathrm{P}(\mathrm{OMe})_{3}$ appears not strong enough as a ligand to directly cleave the dimer, thus allowing observation of the first example of a monoadduct of 1 .

Use of a larger excess of $\mathrm{P}(\mathrm{OMe})_{3}$, at $0^{\circ} \mathrm{C}$. gave the monomeric cleavage product $\mathrm{Cp}^{*} \mathrm{Ru}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{2} \mathrm{OMe}, 3$. At least 8 equivalents of $\mathrm{P}(\mathrm{OMe})_{3}$ are necessary to achieve complete conversion of $\mathbf{1}$ into $\mathbf{3}$. The OMe signal in $\mathbf{3}$ is again shifted upfield and now appears at 3.69 ppm (Table 1). indicating a terminal methoxo ligand. The $\mathrm{P}(\mathrm{OMe})_{\text {a }}$ protons resonate as a pseudo-triplet ${ }^{*} J(\mathrm{H}-\mathrm{P})=11$ Hz) due to strong $\mathrm{P}-\mathrm{P}$ coupling giving an isospin $=1$ system. Complex 3 is air sensitive and also of limited thermal stability at ambient temperature. On standing, it is slowly converted, even as a solid, into the hydride 4 (Scheme 2). This very common transformation of alkoxides of the Pt-metals into hydrides by β-elimination of aldehyde $[5,6]$ does not occur readily with 1 , but does so with its addition products $\mathrm{Cp}^{*} \mathrm{RuL}_{2} \mathrm{OMe}$. Hydride 4 shows a characteristic triplet at high field (-12.8 ppm . Table 1) for the hydridic proton along with the expected Cp^{*} and $\mathrm{P}(\mathrm{OMe})_{3}$ signals.

Finally, a still larger excess of $\mathrm{P}(\mathrm{OMc})_{3}(9$ mole per Ru$)$ reacted with 1 at ambient temperature to give the bisphosphite (phosphonate) complex (p*Ru$\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{2}\left(\mathrm{PO}(\mathrm{OMe})_{2}\right), 5$, in good yield. The formation of 5 can be understood as

Scheme 2.
involving an inter- or intra-molecular Arbuzhov rearrangement [7] of one phosphite ligand, with the highly polarized OMe group acting as the nucleophile, leading to the elimination of $\mathrm{Me}_{2} \mathrm{O}$. The Cp^{\star} ligand in 5 appears as a somewhat unsymmetrical quartet, indicating similar coupling to phosphite and phosphonate phosphorus atoms. The POMe signals show up as a pseudotriplet and a doublet with the signals in a $3: 1$ integration ratio. Complex 5 is slightly air sensitive in solution and as a solid, but appears to be thermally stable.

Whereas this first intramolecular Arbuzhov rearrangement proceeded under rather mild conditions, attempts to bring about further rearrangement of 5 in the same sense by using NaI in acetone, which had furnished bis- and tris-phosphonate complexes of a variety of transition metal moieties [8], was unsuccessful in the present case. Nucleophilic displacement of the phosphonate group gave the corresponding iodo complex $\mathrm{Cp}^{\star} \mathrm{Ru}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{2} \mathrm{I}, 6$, instead.

Similarly the cationic trisphosphite complex $\left[\mathrm{Cp}^{\star} \mathrm{Ru}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{3}\right]^{+}, 7$, which was prepared according to Scheme 3 from 3 generated in situ by treatment with $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ in the presence of an excess of $\mathrm{P}(\mathrm{OMe})_{3}$, and was isolated and

Scheme 3.

Complex	No.	${ }^{(1)^{*}}$	P(OME);	whers
$\left(\mathrm{Cp}^{*} \mathrm{RuOMc}\right)_{2}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)$	2	1.62	$\begin{aligned} & 3.69(11.2) \\ & 151.6 \end{aligned}$	$4.117(0 \mathrm{Me})$
Cp* $\mathrm{Ru}\left(\mathrm{P}(\mathrm{OMc})_{3}\right)_{2}(\mathrm{OMP})$	3	1.731211	$\begin{aligned} & 3.58(11.0) \\ & 15.50 \end{aligned}$	36960 Mc
$\mathrm{CP}^{*} \mathrm{Ru}\left(\mathrm{P}(\mathrm{OMe})_{3}\right) \cdot \mathrm{H}$	4	2.040 .12 .59	$\begin{aligned} & 3+4(11.6\} \\ & 170.7 \end{aligned}$	$\cdots 12 \times 10$
$\left(\mathrm{p}^{*} \mathrm{Ru}\left(\mathrm{P}(\mathrm{OME})_{3}\right)\left(\mathrm{PO}(\mathrm{OMe})_{2}\right)\right.$	5	1.85(2.1)	$\begin{aligned} & 3.55(11.1) \\ & 156.6(0), 107.0(0,111.3) \end{aligned}$	3.08 (POHOMe) ${ }_{2}$
Cp* Ru(P(OMc) $)^{\prime}$: 1	6	1.76.2.4)	$\begin{aligned} & 3.52(116) \\ & 156.6 \end{aligned}$	
$\left[\mathrm{Cp}^{*} \mathrm{Ru}\left(\mathrm{P}(\mathrm{OMC})_{3}\right)_{2}\right]^{\text {cF }} \mathrm{SO}_{3} \mathrm{SO}_{3}$	7	$1.73(2.5)$	$\begin{aligned} & 3.67(11.2) \\ & 1506 \end{aligned}$	

" ${ }^{3}\left(\mathrm{HCR} \mathrm{R}_{\mathrm{P}} \mathrm{P}\right){ }^{3} \mathrm{~J}(\mathrm{HCRulD})$
characterized as the $\mathrm{CF}_{3} \mathrm{SO}_{3}$-salt, gave 6 on treatment with iodide instead of undergoing an Arbuzov reaction.

Experimental

All operations were performed under pure, dry nitrogen by standard Schlenk technique. NMR was run on Bruker SY 80 FT, mass spectra on a Varian CH5 DF. and IR spectra on Perkin-Elmer 842 FT Instruments.

Bis/ μ-methoxo(pentamethylcyclopentadienyl)ruthenium/trimethylphosphite. $\left(\mathrm{Cp}^{\star} \mathrm{RuOMe}\right)_{2}\left(\mathrm{P}\left(\mathrm{OMe}_{3}\right)\right.$ (2). To a solution of $0.35 \mathrm{~g}(0.565 \mathrm{mmol})$ of bis μ methoxo(pentamethylcyclopentadienyl)ruthenium], 1 , in 50 ml of pentane was added $0.5 \mathrm{~g}(3.95 \mathrm{mmol})$ of $\mathrm{P}(\mathrm{OMe})_{3}$. The colour of the solution immediately changed from cherry red to red brown. After a few minutes at ambient temperature the solution was filtered and cooled to $-80^{\circ} \mathrm{C}$. Complex 2 separated overnight as dark red crystals, which were isolated and dried in tacuo. Yield was 82%. The mass spectrum of 2 was identical with that of 1 (so showing no molecular ion).

Pentamethylcyclopentadienyl(bis(trimethylphosphite)(methoxo)nuthenium. (p**R($\left.\mathrm{P}(\mathrm{OMe})_{3}\right)_{2}$ OMe (3). To a solution of $0.135 \mathrm{~g}(0.25 \mathrm{mmol})$ of 1 in 30 ml pentane, cooled to $0^{\circ} \mathrm{C}$, was added $0.25 \mathrm{~g}(2.02 \mathrm{mmol})$ of $\mathrm{P}(\mathrm{OMc})$. During 5 h the colour changed to light brown. After filtration the solvent was stripped and the excess of $\mathrm{P}(\mathrm{OMc})_{3}$ was evaporated off in racuo. The residue was rectystallized from pentane. Cooling of a concentrated pentane solution gave fort of 3 as a yellow
 M^{\prime}), 455 ($27, M^{\prime}-\mathrm{OMe}, 360$ ($30, M-\mathrm{P}(\mathrm{OMe})_{3}-\mathrm{OMe}$, 345 (90). $\left.\mathrm{Cp}^{*} \mathrm{RuPO}(\mathrm{OMe})_{2}\right)$. Anal. Found: C, 39.08; H. 6.75. $\mathrm{C}_{1} \mathrm{H}_{3} \mathrm{O}_{7} \mathrm{P}, \mathrm{Ru}$ calcd. (M_{5} $515.5)$: C, $39.60, \mathrm{H}, 7.05 \%$

Pentamethylcyclopentadienyl(bis(trimethylphosphite))hydridoruthenium. (p*Ru$\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{2} \mathrm{H}$ (4). To a solution of $0.123 \mathrm{~g}(0.23 \mathrm{mmol})$ of 1 in .30 ml MeOH was added $1.2 \mathrm{~g}(9.65 \mathrm{mmol})$ of $\mathrm{P}(\mathrm{OMc})_{3}$. The solvent was removed on a water bath at $40^{\circ} \mathrm{C}$ by applying a gentle vacuum. The residual oily solid. which partly crystallized on standing, was redissolved in pentane. Cooling of the solution to - $80^{\circ} \mathrm{C}$ gave
about a 20% yield of the product as light brown crystals. IR (KBr): $1925 \mathrm{~m} \mathrm{~cm}^{-1}$ ($\mathrm{Ru}-\mathrm{H}$). MS ($m / e, I_{\text {rel }} \%$): 486 ($100, M^{+}$), 455 ($16, M-\mathrm{OMe}$), 345 (40 , $\mathrm{Cp}^{*} \mathrm{RuPO}(\mathrm{OMe})_{2}$). Anal. Found: C, 37.7; H, 7.35. $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Ru}$ calcd. (M_{r} 485.5): C, 39.6, H, 7.06\%.

Pentamethylcyclopentadienyl(bis(trimethylphosphite))(dimethylphospinito-P-)ruthenium, $\mathrm{CD}{ }^{\star} \mathrm{Ru}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{2}\left(\mathrm{PO}(\mathrm{OMe})_{2}\right)$ (5). To a solution of $0.358 \mathrm{~g}(0.67 \mathrm{mmol})$ of 1 in 35 ml of pentane was added $1.485 \mathrm{~g}(12 \mathrm{mmol})$ of $\mathrm{P}(\mathrm{OMe})_{3}$. After 3 h the brown mixture was filtered and the solvent evaporated in vacuo. The excess of $\mathrm{P}(\mathrm{OMe})_{3}$ was removed under high vacuum. The product crystallized in 80% yield when a concentrated pentane solution was cooled to $-80^{\circ} \mathrm{C}$. MS ($\mathrm{m} / \mathrm{e}, I_{\mathrm{rel}} \%$): 594 (96, M^{+}), $485\left(85, \quad M-\mathrm{PO}(\mathrm{OMe})_{2}\right), 470\left(100, \quad M-\mathrm{P}(\mathrm{OMe})_{3}\right), 360$ (96, $\left.\mathrm{Cp}^{\star} \mathrm{RuP}(\mathrm{OMe})_{3}\right), 345\left(85, \mathrm{Cp}^{\star} \mathrm{RuPO}(\mathrm{OMe})_{2}\right)$. Anal. Found: C, 36.60; H, 6.37. $\mathrm{C}_{18} \mathrm{H}_{39} \mathrm{O}_{9} \mathrm{P}_{3} \mathrm{Ru}$ calcd.: ($M_{\mathrm{r}} 593.6$): C, $36.42 ; \mathrm{H}, 6.64 \%$.

Pentamethylcyclopentadienyl(bis(trimethylphosphite))(iodo)ruthenium, $\quad C p^{*} R u-$ $\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{2} I(6)$. To $0.19 \mathrm{~g}(0.354 \mathrm{mmol})$ of 1 in 25 ml of ether was added 0.79 g $(6.37 \mathrm{mmol})$ of $\mathrm{P}(\mathrm{OMe})_{3}$ and then, after $5 \mathrm{~min}, 1.026 \mathrm{~g}(0.708 \mathrm{mmol})$ of NaI in 30 ml ether. After 17 h the reaction solution, now light brown, was filtered and the solvent evaporated. The residue was extracted with pentane. Cooling of the extract to $-80^{\circ} \mathrm{C}$ gave $0.3 \mathrm{~g}(70 \%)$ of 6 as an orange yellow solid. Anal. Found: C, 31.77, $\mathrm{H}, 5.42 . \mathrm{C}_{16} \mathrm{H}_{33} \mathrm{IO}_{6} \mathrm{P}_{2} \mathrm{Ru}$ calcd. ($M_{\mathrm{r}} 611.4$): $\mathrm{C}, 31.43$; $\mathrm{H}, 5.45 \%$.

Pentamethylcyclopentadienyl(tris(trimethylphosphite)) ruthenium-trifluoromethylsulfonate, $/ \mathrm{Cp}^{\star} \mathrm{Ru}\left(\mathrm{P}\left(\mathrm{OMe}_{3}\right)_{3} / \mathrm{CF}_{3} \mathrm{SO}_{3}\right.$ (7). A solution of 3 was prepared by adding $0.688 \mathrm{~g}(5.54 \mathrm{mmol})$ of $\mathrm{P}\left(\mathrm{OMe}_{3}\right.$ to $0.372 \mathrm{~g}(0.7 \mathrm{mmol})$ of 1 in 30 ml of ether and stirring the mixture for 3 h at $0^{\circ} \mathrm{C}$. To this was added, with vigorous stirring, $0.25 \mathrm{~g}(1.67 \mathrm{mmol})$ of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ in ether, whereupon the product separated as a brown precipitate. After 12 h at ambient temperature the precipitate was filtered off, washed with ether and twice with a few ml of water, and dried in vacuo. The cream-coloured powder was obtained in 60% yield. Anal. Found: C, 31.65; H, 5.7. $\mathrm{C}_{20} \mathrm{H}_{42} \mathrm{~F}_{3} \mathrm{O}_{12} \mathrm{P}_{3} \mathrm{SRu}$ calcd. ($M_{\mathrm{r}} 757.7$): C, 31.70, H, 5.6\%.

Acknowledgments

This work was supported by the Fonds der Chemischen Industrie. A generous loan of RuCL_{3} by Johnson-Matthey, Rcading, England, is gratefully acknowledged.

References

1 U. Koelle, B.-S. Kang and U. Thewalt, Organometallics, in press.
2 U. Koelle and J. Kossakowski, J. Chem. Soc., Chem. Commun., (1988) 549.
3 U. Koelle and J. Kossakowski, J. Organomet. Chem., 362 (1989) 383.
4 S.D. Loren, B.K. Campion, R.H. Heyn, T. Don Tilley, B.E. Bursten and K.W. Luth, J. Am. Chem. Suc., 111 (1989) 4712.
5 R.C. Mehrotra, S.K. Agarwal and Y.P. Singh, Coord. Chem. Rev., 68 (1985) 101.
6 H.E. Bryndza and W. Tam, Chem. Rev., 88 (1988) 1163.
7 T.B. Brill and S.J. Landon, Chem. Rev., 84 (1984) 577.
8 (a) H. Werner and R. Feser, Z. Allg. Anorg. Chem., 485 (1979) 309; (b) W. Kläui, H. Otto, W. Eberspach and E. Buchholz, Chem. Ber., 115 (1982) 1922; (c) U. Schubert, R. Werner, L. Zinner and H. Werner, J. Organomet. Chem., 253 (1983) 363; (d) W. Kläui and E. Buchholz, Inorg. Chem., 27 (1988) 3500.

[^0]: Correspondence to: Dr. U. Koelle, Technical University of Aachen, W-5100 Aachen, Germany.

 * For Part X, see ref. 1.

